• Book Name: Electric Power System Basics For the Nonelectrical Professional By Steven W Blume
  • Author: Steven W Blume
  • Pages: 259
  • Size: 6 MB
electric power system basics pdf free download

Electric Power System Basics PDF Free Download

This book is intended to give nonelectrical professionals a fundamental understanding of large, interconnected electrical power systems with regard to terminology, electrical concepts, design considerations, construction practices, industry standards, control room operations for both normal and emergency conditions, maintenance, consumption, telecommunications, and safety. Several practical examples, photographs, drawings, and illustrations are provided to help the reader gain a fundamental understanding of electric power systems. The goal of this book is to have the nonelectrical professional come away with an in-depth understanding of how power systems work, from electrical generation to household wiring and consumption by connected appliances.

This book starts with terminology and basic electrical concepts used in the industry, then progresses through generation, transmission, and distribution of electrical power. The reader is exposed to all the important aspects of an interconnected power system. Other topics discussed include energy management, conservation of electrical energy, consumption characteristics, and regulatory aspects to help readers understand modern electric power systems in order to effectively communicate with seasoned engineers, equipment manufacturers, field personnel, regulatory officials, lobbyists, politicians, lawyers, and others working in the electrical industry.

Electric Power System Basics PDF Free Download

A brief overview of each chapter is presented here because knowing where and when to expect specific topics and knowing how the information is organized in this book will help the reader comprehend the material easier. The language used reflects actual industry terminology.

Chapter 1 provides a brief yet informative discussion of the history that led to the power systems we know today. Then a system overview diagram with a brief discussion of the major divisions within an electric power system is provided. Basic definitions and common terminology are discussed such as voltage, current, power, and energy. Fundamental concepts such as direct and alternating current (i.e., dc and ac), single-phase and three-phase generation, types of loads, and power system efficiency are discussed in order to set the stage for more advanced learning. Some very basic electrical formulas are presented in Chapter 1 and at times elsewhere in the book. This is done intentionally to help explain terminology and concepts associated with electric power systems. The reader should not be too intimidated or concerned about the math; it is meant to describe and explain relationships.

Basic concepts of generation are presented in Chapter 2. These concepts include the physical laws that enable motors and generators to work, the prime movers associated with spinning the rotors of the different types of generators, and the major components associated with electric power generation. The physical laws presented in this chapter serve as the foundation of all electric power systems. Throughout this book, the electrical principles identified in this chapter are carried through to develop a full-fledged electric power system.

Once the fundamentals of generation are discussed, the different prime movers used to rotate generator shafts in power plants are described. The prime movers discussed include steam, hydro, and wind turbines. Some of the nonrotating electric energy sources are also discussed, such as solar voltaic systems. The basic environmental issues associated with each prime mover are mentioned.

The major equipment components associated with each type of power plant are discussed, such as boilers, cooling towers, boiler feed pumps, and high- and low-pressure systems. The reader should gain a basic understanding of power plant fundamentals as they relate to electric power system generation. The reasons for using very high voltage power lines compared to low-voltage power lines are explained in Chapter 3. The fundamental components of transmission lines such as conductors, insulators, air gaps, and shielding are discussed. Direct current (dc) transmission and alternating current (ac) transmission lines are compared along with underground versus overhead transmission.

The reader will come away with a good understanding of transmission line design parameters and the benefits of using high-voltage transmission for efficient transport of electrical power. Chapter 4 covers the equipment found in substations that transform very high voltage electrical energy into a more useable form for distribution and consumption. The equipment itself (i.e., transformers, circuit breakers, disconnect switches, regulators, etc.) and their relationship to system protection, maintenance operations, and system control operations will be discussed. Chapter 5 describes how primary distribution systems, both overhead and underground, are designed, operated, and used to serve residential, commercial, and industrial consumers. The distribution system between the substation and the consumer’s demarcation point (i.e., service entrance equipment) will be the focus. Overhead and underground line configurations, voltage classifications, and common equipment used in distribution systems are covered. The reader will learn how distribution systems are designed and built to provide reliable electrical power to the end users. The equipment located between the customer service entrance equipment (i.e., the demarcation point) and the actual loads (consumption devices) themselves are discussed in Chapter 6. The equipment used to connect residential, commercial, and industrial loads are also discussed. Emergency generators and Uninterruptible Power Supply (UPS) systems are discussed along with the issues, problems, and solutions that pertain to large power consumers.

The difference between “system protection” and “personal protection” (i.e., safety) is explained first in Chapter 7, which is devoted to “system protection”: how electric power systems are protected against equipment failures, lightning strikes, inadvertent operations, and other events that cause system disturbances. “Personal protection” is discussed in Chapter 10. Reliable service is dependant upon properly designed and periodically tested protective relay systems. These systems, and their protective relays, are explained for transmission lines, substations, and distribution lines. The reader learns how the entire electric power system is designed to protect itself.

Chapter 8 starts out with a discussion of the three major power grids in North America and how these grids are territorially divided, operated, controlled, and regulated. The emphasis is on explaining how the individual power companies are interconnected to improve the overall performance, reliability, stability, and security of the entire power grid. Other topics discussed include generation/load balance, resource planning and operational limitations under normal and emergency conditions. Finally, the concepts of rolling blackouts, brownouts, load shedding, and other service reliability problems are discussed as are the methods used to minimize outages. System control centers, the subject of Chapter 9, are extremely important in the day-to-day operation of electric power systems. This chapter explains how system control center operators monitor and use advanced computer programs and electronic telecommunications systems to control the equipment located in substations, out on power lines, and the actual consumer sites. These tools enable power system operators to economically dispatch power, meet system energy demands, and control equipment during normal and emergency maintenance activities. The explanation and use of SCADA (Supervisory Control and Data Acquisition) and EMS (Energy Management Systems) are included in this chapter.

The functionality and benefits of the various types of communications systems used to connect system control centers with remote terminal units are discussed. These telecommunications systems include fiber optics, microwave, powerline carrier, radio, and copper wireline circuits. The methods used to provide high-speed protective relaying, customer service call centers, and digital data/voice/video communications services are all discussed in a fundamental way.

The book concludes with Chapter 10, which is devoted to electrical safety: personal protection and safe working procedures in and around electric power systems. Personal protective equipment such as rubber insulation products and the equipment necessary for effective grounding are described. Common safety procedures and proper safety methods are discussed. The understanding of “Ground Potential Rise,” “Touch Potential,” and “Step Potential” adds a strong message as to the proper precautions needed around power lines, substations, and even around the home.

Please note that some sections within most chapters elaborate on certain concepts by providing additional detail or background. These sections are marked “optional supplementary reading” and may be skipped without losing value.

Electric power system basics pdf free download.


Leave a Reply

Avatar placeholder

Your email address will not be published. Required fields are marked *